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A block B{ad = [{x,]: XI. al., {a,: Ell', ak tJ is a compact subset of Ip.
The ellipsoid E{bd is the compact subset of Iv given by {{x,] E /p : I: i Xkibk ? .-;; 1,
b, to}. Let H(S, €) be the €-entropy of the set S with respect to the I" metric.
The following results are obtained:

r Hl/O(B{a,}, E) d€ < X -¢> I: al. < OC,
• 0

LH(E{b l.·], €) (h" < 'i:.' -= I: b l,." < :fJ,

1 < p < :fJ, q = pj(p - 1).

1. RESULTS AND DISCUSSION

Let {ale} be a nonincreasing sequence, {a,J E I", 1 < P < w. We shall
consider two compact subsets of [P: a block B{a,,} and an ellipsoid E{b,.],
defined as follows:

E{b le} = j{Xl'} E /1'; I I ~" 11' ~ 1, b le ~ al·
I k=l k J

Let S be a compact subset of [p and N(S, E) the smallest number of sets
of diameter at most 2E that cover S. The metric is the Ip metric, i.e., the
covering sets are translations of the sets {{gJcJ E [1': (L: I g" IP)l/P ~ E}. The
E-entropy of S, H(S, E), is defined as log N(S, E).

Motivated by a problem in probability to which we shall refer below,
we obtain necessary and sufficient conditions on the E-entropy of B{a,,}
which imply that L ale < w, and necessary and sufficient conditions on the
E-entropy of E{b,J which imply that L b"p < w. Our results are:
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THEOREM 1. Let {ak} be nonincreasing, {ak} E !P, 1 < P < 00, and let
H(B{ak}' E) be the E-entropy of B{ak} with respect to the !p metric; then

f Hl/<J(B{ak}, E) dE < 00 -= L ak < 00,
o

where q = pJ(p - 1).

THEOREM 2. Let E{bk} be an !p ellipsoid and H(E{bk}) its E-entropy with
respect to the !p metric; then

JH(E{b,J, E) dE 1
) < 00 -= L bk

P < oo.
o

From Theorem 1, we shall deduce the corollary.

COROLLARY. Let {ak} be a nonincreasing sequence, {ak} E IP, 1 < P < oo.
Let

and M(y) = sup{n: dn ~ y};

then

f Ml/'1(y) dy < 00 -= f. Hl/q(B{ak}, E) dE < 00,
o '0

where q = pJ(p - 1).

In [1] Mitjagin gives estimates for the E-entropy of various subsets of IP.
Theorems 1 and 2 are not so much estimates of the E-entropy of blocks and
ellipsoids as characterizations of certain geometric properties of B{ak } and
E{bk } by conditions on their E-entropy. Lorentz [9] estimates the E-entropy
of full approximation sets in arbitrary Banach spaces. His results are inde­
pendent of the norm of the Banach space while Theorem 1 depends on p.

A Gaussian process can be described as a linear map from a Hilbert space
H into real-valued Gaussian random variables. A block B{ak } in H will map
into a continuous Gaussian process iff L ak < 00, and an ellipsoid E{bk }

will map into a continuous Gaussian process iff L bk
2 < oo. Therefore,

Theorems 1 and 2 with p = q = 2 give necessary and sufficient conditions
for the processes that are images of B{an } and E{bn } to be continuous, in
terms of the E-entropy of Band E (see [2-5] for details). In [5] Theorem 1 is
obtained in the case p = 2; however, the implication going to the right is
proved by a probabilistic argument which doesn't seem to be extend to !p
for p i= 2. Attempting to find a nonprobabilistic proof of this result led to
this work.



306 \1. B. MARCLJS

In the case p =, 2, Theorem 2 is stated by Sudakov [4]. Our proof is a
simple application of Mitjagin's ([I], Theorem 3) estimate for the c-entropy
of E({bnD in /1'.

The corollary is mentioned as a potentially useful curiosity. Generally,
for L ai, < 00, M(c) is much larger than H(c); however, when {ak ] is fairly
smooth and close to being a divergent sequence (i.e., a" .. =C lin", e\ I),
M is comparable to H.

The results in this paper are obtained using techniques developed in
Boas and Marcus [6] for examining the mutual convergence or divergence
of integrals involving a monotone function and its generalized inverse.
The author is grateful for Professor Boas' assistance in this work.

2. PROOFS

The following lemmas are used in the proofs.

LEMMA 1. Let G(x) be a nonincreasing real-valued function on [a, 00)

and G-l(y) a generalized inverse of G; then the following integrals are either
all convergent or all divergent:

Fe G(x) dx, r X dG(x), J~ G-l(y) dy.

This lemma is proved for the first and third integral in [6]. The proof is
simply an application of integration by parts. The same argument applies
to the second integral.

LEMMA 2. Let {ak} E fl', I < P 00, be nonincreasing. Define

The implication to the right is Theorem 345, p. 255, in Hardy, Littlewood,
and Polya [7]. The converse is due to Boas [8].

LEMMA 3. Let f be a continuous function andg a piecewise strictly monotone
continuous function;

Then

g(O) = 0 = min g(x);
o~x:::;;;a

g(o) = y ~~ max g(x).
O<x~8

fy feu) du = rOf(g(u)) dg(u).
o .()
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Proof A piecewise monotone function has a countable number of local
maxima and minima. Suppose that g(u) is decreasing in [01 , O2]; then there
is another interval [00 , 01 ] such that g is increasing in [00 , 01 ] and
g(oo) = g(02)' Since g is monotone in each interval

Since g(o) = y and g(O) = 0, we can began at 0 and integrate backwards
applying 2.1 when necessary. The result follows.

Proof of Theorem 1. Let B{ale} be a block in !p with L ale < w. It is
convenient to eliminate large jumps in {alJ Construct a nonincreasing
sequence {bIJ, ble ~ ai', such that b" :c:;; 2b"+l . Then

(2.2)

The sequence {b,,} can be constructed so that L b" < w. H(B{b,,}, E), the
E-entropy of B{b,,} with respect to the !p metric, is larger than H(B{a,J, E)
since B{a,,} C B{ble }. We will show that

rH1/a(B{b n}, E) dE < 00,
'0

which implies f~ Hl/q(B{an}, E) (IE < w.
Let

and

Since the On are decreasing, if bAlon ~ 1, then bjon+l ~ 1. Let

M( ) - . \ ~k' E'£ ~> Inn -mlll ll1,max/· o :/ II'
. . n I •

(2.3)

We shall now find an upper bound N(En ) for N(B{b,,}, En). For n fixed,
consider the following elements in B{b,,}:

(2.4)

k = I,... , M(n);

([ 1denotes integral part).
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Let x E B{ble }. There is an element in (2.4), call it x for which

/I

X - x liP ~ M(n) 6n " -- I bleT' I ble p
•

/;- .lVI(nH 1 1.~n+1

where 1111 refers to the 11' norm. By (2.3),

il x - xIll' ~ nOnP +- I bk
V ~ 2 I b,/"

k~n+1 k~n+1

that is, II x - x II ~ En'
The covering sets are of the form.x S where x is an element of (2.4)

and S is the following neighborhood of the origin.

S = {{Xi}: I Xi I ~ On , i = 1,... , n; 1 Xi I bi,i>n}.

N(B{b le}, En) is less than the number of elements in (2.4), i.e.,

Let B(En) = log N(E n), for some N dependent on 0

o 'Xr H1/q(B{b IeL E) dE ~ I H1/<1(B{bd. En)[En- 1 - En]
'0 n~N

0:'

~ I H1/q(E n)[En_1 - En]
n=N

~ EN_1H1/q(EN) +- I En[H1/q(En~1) - H1/Q(E n)]. (2.5)
n=N

This section of the proof is completed by showing that L ble < 00 implies
that the final sum in (2.5) is finite.

(2.6)
if

~ c I On[H(En+l) - B(En)]
ll=N

for some constant C, since B(En) > n.

- - [ M(n+l) ble On M<nll
H(En+l) - H(E n) = log 4 TI -0- (-0-)

Ie~M(n)+1 n+1 n+1
o M(n+l) b

=log4+-M(n)log~+- I log~.
°n+1 lc~M<n)+1 °n-'-!
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Note that

M(n+1) b bL log _k :'( (M(n + 1) - M(n)) log M(n)+1
k~M(nl+1 Dn+1 Dn+1

D
:'( (M(n + 1) - M(n)) log~ .

n+1
Therefore

- _ D
B(En +1) - B(En ) :'( log 4 + M(n + 1) log~

°n+1
D - D

:'( log 4 + M(n + 1) n D n+1,
n+1

and using (2.2) and (2.6),

00 00 0:.

L Dn[B(En+1) - B(En)] :'( C1 L Dn + C2 L n[Dn - Dn+1],
n~N n~N n~N

where C1 and C2 are constants. These series converge by Lemma 2.
To prove the converse, we assume that the integral is finite and show that

the sum must be finite. This part of the proof is more difficult than the first
part since we cannot form the sequence {b k } satisfying (2.2), and, conse­
quently, cannot readily approximate the integral by sums.

Let F(x) = ak, k - 1 < x :'( k and F-1(y) = sup{x: F(x) :? y}. For a
fixed value of y, consider the partial sequence {ak}' k = 1, ... , F-1(y). Divide
the interval [-ak , ak] into [2ak/y + I] disjoint intervals of length y/2. Then
there are at least

disjoint sets, all contained in B({a,J), with radius (F-1(y))1/p(y/4). Conse­
quently,

(
~wa

H B{ak}, (F-1(y))1/P*) :? log 2P-
1
(y) I1 -'!.:? F-1(y) log 2. (2.7)

"0=1 Y

Since {a,J E [P, limy~o y(F-1(y))1/ P = O. Let D be such that 4y = DF-1(D) >
yF-l(y) if 0 :'( y < D. The function y(F-l(y))l/P is piecewise monotone.
A sequence of continuous functions {Gk(y)} can be obtained such that
y(Gk(y))l/ P is also piecewise monotone, and y(Giy))l/P increases to
y(F-l(y))l/ P as k --+ 00. H, by definition, is nonincreasing; therefore,
using (2.7),

H [* (GiY))l/p] :? H [* (F-1(y))1/P] :? log 2F-1(y).
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By Lemma 3,

M. 13. MARCUS

f 1fl/'l(E) (IE .C) Hl" [~(Gi.(YWll'] d [± (Gi,(y»ll']

C ( (F-I(y»li'l d[y(GJ.(y»I/l'],
·'0

where C = log 2/4. Integrating by parts, we obtain

r [F-I(y)Jl/'i d[y(Gk(y»I/f']
a

== (FI(8»)!!" 8(Gi8»1!1/ - (F-I(a»l/q a(Gk(a»I/J!
.0- I y(GleCV»I/J' d(F-I(y»I/'!

• (I

?: -aF-I(a) - 1'6 y(G,..(y»)!/J! d(F-I(y»I!'!.
~, (/.

Assume that lim infa~o aF-I(a) 4, then

.8- I y(Gle(y»I/lJ d(F-I(y»I/q < C
"0

independent of k. By the monotone convergence theorem and a change of
variables,

J
8 .0

lim - y(Gle(y»I!P d(F-I(y»l(" = - J y(F-I(y»I/J! d(F-I(y»)!/'!
k~oo 0 0

= rae F(x) x1/J! dxl(q
• F-l(O)

= l/q rae F(x) dx
• F-1 ((!)

ex;

= l/q I ak < C.
F-l(8)

This proves the result when lim infa~o aF-I(a) ~ 4, but this must be the
case whenever fo Hljq(E) dE < 00. To see this, suppose lim infa~o aF-I(a) > 4;
then for k > N for some N sufficiently large, ale > 4/k and by (2.7),

H(k-l /
q

) > H ( kl;ak
) > log 2k.
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Proof of Theorem 2. Define F(x) = b/;;, k - 1 < x ~ k; F(O) = b1 .
Let F-l(y) = sup{x: F(x) ~ y} and E{b/;;} be an ellipsoid in Ip. Mitjagin
([1], Theorem 3, p. 71) gives the following bounds for the E-entropy of
E{b/;;} with respect to the Tp metric:

II F-l~y) dy ~ H(E{b/;;}, E) ~ F-l(E/2) log 4 + II F-l~y) dy. (2.8)
2< ) </2 Y

We also use a result which follows immediately from Lemma 1, namely that

r F-1(cs1/])) ds < CD = I CL P(x) dx = f b/;;p < CD, (2.9)
'0

where c > O. Denote H(E{b1cJ, E) by H(E). By (2.8),

8 8 b, F-l()
= C1 I F-l(1/2s1/P) ds + I I --,y- dy ds.

o 0 S'/p 12 )

The first integral converges for {bd E Ip by (2.9). By Lemma 1, the second
integral converges iff

1
,8 lb1 F-l(y) 1 fO (Sli l)) "

sd -- dy = - - F-l - ds < CD •
• 0 s'ip12 Y P 0 2

Consequently f~ H(E) dE P < CD ifL'"' b/;;p < CD. Again by (2.6),

By Lemma 1, the last integral converges iff

8 b, F-l() 1 8

J sd i --y- dy = - - r F-1(2s 1Ip) ds < CD.
o 2s

'
/" Y P ./0

Therefore if f~ H(E) dE P < CD, then by (2.7), LCD b/;;p < CD.

Proof of the Corollary. This result is contained in Corollary 4 of [6]
but since the proof, in this case, is easy, it will be repeated. Define F(x) = dn ,

n - 1 < x ~ n; F(O) = d1 ; then

F-l(y) = sup{x: F(x) ~ y} = sup{n: dn ?;: y} = M(y).
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By Lemma I,

r Mliq(y) dy
• 0

By a change of variables,

\1. B. MARCUS

CfJ ."" r yd(F-1Cv))1/'1
'0

00 .

and

The last statement is Lemma 2.
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